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A mechanism of surface micro-roughening 
by ion bombardment 

PETER S I G M U N D  
H. C. Orsted Institute, DK-2100 Copenhagen 0, Denmark 

The spatial distr ibut ion of sputter-etch effects is analysed theoretically under the assump- 
tion of random slowing-down of the bombarding ions. When a surface is bombarded at 
locally obl ique incidence the most pronounced sputtering effect is likely to be observed 
not at the very point of impact, but further "downstream".  This effect may cause a 
signif icant reduction of the local sputtering yield on top of a spike or a ridge, and an 
increase on the bottom of a groove or a crater. As a consequence, small irregularit ies on a 
relatively smooth surface may be enhanced during bombardment. It is concluded that a 
microscopical ly fiat surface is unstable under high-dose ion bombardment unless atom 
migration acts as a dominat ing smoothing effect. Conversely, sharp cones appear to be 
surpr is ingly stable under bombardment. Even on a clean surface, cones erode more slowly 
than a plane surface, provided that their d imensions are of the order of, or less than, the 
penetration depth of the ions. 

1. In t roduct ion  
Ion-bombarded surfaces may exhibit a variety of 
picturesque structures when viewed by, e.g. 
scanning electron microscopy or replica tech- 
niques [1-3]. Such structures may depend upon 
the purity of a surface and structural defects like 
grain boundaries, dislocations etc. Existing 
experimental evidence has led several groups 
[4-6] to suggest that surface topography also 
may occur under bombardment of clean single 
crystal surfaces, i.e. without a dominating action 
of pre-existing defects or impurities. The occur- 
rence of craters and cones, hillocks and furrows, 
ridges and grooves under bombardment may not 
only be annoying to the technologist who started 
off to polish a surface by ion bombardment, it 
may also need to be considered in the theory of 
sputtering, where the assumption of a plane 
target surface often enters. 

In the discussion of radiation-induced surface 
topography, a major role is being played by the 
dependence of the sputtering yield on angle of 
incidence [5, 6], crystallographic orientation [4], 
and defect state [4]. The implication seems to be 
that, once a certain structure has nucleated, its 
growth will largely be determined by the angular 
dependence of the sputtering yield [5-7], while 
nucleation takes place at radiation-induced 

�9 1973 Chapman and Hall Ltd. 

defects [4] or impurities [8]. The underlying 
assumption is that a flat, homogeneous surface 
sputters homogeneously, i.e. that some signific- 
ant disturbance must be created before observable 
structure may occur. 

The question may be asked whether a plane 
surface is a stable equilibrium configuration under 
ion bombardment. The arguments of  Stewart 
and Thompson [5] suggest a dynamic equi- 
librium of inclined surface planes, oriented 
according to maximum sputtering yield, moving 
rapidly along the surface. The mutual interaction 
of many such moving planes would then give 
rise to various observable surface structures. 
While the experimental results [5, 9] seem to 
confirm a preferred inclination of surface planes, 
it appears difficult in this model to explain the 
existence of cones on top of an otherwise plane, 
horizontal surface. One would expect the cones 
to erode much faster than the underlying plane 
[6]. Catana et al [6] suggested a preferred 
orientation of surface planes at an angle 00 
where the sputtering yield is S(Oo) = S(0), i.e. the 
yield at normal incidence. Their computer 
simulations yield a drastic enhancement of a: 
given (sine-like) surface roughness during subse-- 
quent bombardment. It appears somewhat 
easier within such a picture to explain~ the: 
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abundance of cones, palisades, ridges, and 
furrows reported lately [9-11]. A number of 
secondary effects that had been omitted in both 
models have been pointed out more recently 
[12]. 

Nucleation has been suggested to take place at 
radiation-induced defect clusters [4], and there 
seems to be experimental evidence to support this 
assertion. It is not obvious whether a similar 
nucleation mechanism would operate also in 
amorphous materials [12, 22]. 

The inherent spatial inhomogeneity of the 
sputtering process has usually been left out of 
consideration. In [5 and 6], the sputtering yield 
enters as a continuous erosion function that 
depends on the orientation of the surface in the 
vicinity of any considered point. One neglects the 
discontinuous character of a sputtering event, the 
fluctuations in the yield, and the finite dimensions 
of atomic collision cascades initiated by the 
bombarding ions. Such a simplification may be 
justified if one is interested in the growth of a 
surface structure with ultimate dimensions that 
are much larger than the dimensions of atomic 
collision cascades. This is often the case (e.g. 
[7-9]). Some caution may, however, be appro- 
priate in high-energy experiments because of 
greater penetration [10], or high-resolution 
experiments [11]. It is less obvious how to 
justify the neglect of spatial inhomogeneities in 
explaining the nucleation process. 

The present study has been undertaken mainly 
in order to get an indication of whether the 
assumption of a plane surface in sputtering 
theory is feasible. It turned out that, on a length 
scale determined by the penetration depth of the 
bombarding ions, a planar surface is unstable 
under ion bombardment unless a separate 
smoothing process (e.g. atom migration) is 
acting besides sputtering. The model is based on 
a theory of sputtering of random targets pro- 
posed by the author [13]. The model predicts in a 
rather direct way a considerable stability of tiny 
cones and ridges, and appears to be consistent 
with a number of experimental observations. 

It is not suggested that the present model 
should replace the existing mechanisms to 
explain the occurrence of surface topography. In 
view of the great variety of observations, there is 
probably ample space for many competing 
mechanisms. The considerations presented in the 
following two sections can be incorporated 
readily in a computer simulation model like the 
one described in [6]. Therefore, in the following 
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discussion we restrict our attention to a small 
number of instructive and, possibly, over- 
simplified examples, in order to demonstrate the 
significance of the effects. Some implications and 
limitations will be discussed subsequently. 

2. The  model 
Let a collimated, monochromatic ion beam 
bombard a solid target with a plane surface. The 
average number of sputtered atoms per bombard- 
ing ion, i.e. the total sputtering yield, is then given 
by [13] 

S(x) = A Fn(x) (1) 

where x is the depth at which sputtering is 
observed, e.g. the thickness of a foil that can be 
passed by the ion beam. For a thick target, 
sputtering can be observed only at x = 0. The 
quantity A is a constant characterizing the 
target material, in particular the state of the 
surface, and FD(x) the average energy deposited 
per unit depth at depth x. This function has been 
studied in detail in [14], under the assumption of 
random slowing-down of the ion and the high- 
energy secondary recoil atoms in an infinite 
medium. In addition to its depth dependence, 
FD(x) also depends on the target/ion mass ratio, 
ion energy, and angle of incidence. 

Straightforward extension of Equation 1 to an 
arbitrary (non-planar) geometry yields 

S(r)da = A Fv(r) da (2) 

where (Fig. 1) S(r) da is the average number of 
target atoms sputtered from a surface element da 
at a vector distance, r, from the point of impact 
of the bombarding ion, and F•(r) the energy 
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Figure I Spatial distribution of the sputtering process. At 
a vector distance r from the impact point of the ion, 
S(r)da atoms are sputtered in the average from the area 
da. 
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deposited per unit volume at r. For  planar 
geometry we have da = dydz, and Equation 1 
follows from Equation 2 by means of the 
relation [14] 

FD(x)=ffdydzFD(r). 
The method used to derive Equation 1 in [13] is 
not particularly suited to derive Equation 2. 
However, Equation 2 can be derived easily by 
means of the arguments used in [15]. Note, in 
particular, that the orientation of the surface 
element da does not enter. We call S(r) the local 
or differential sputtering yield. 

Fig. 2 shows a typical contour plot of  FD(r), 
together with the ion range, in the x -y  plane [14] 
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Figure 2 Contour plot of average deposited energy (left) 
and ion range profile (right), calculated for equal masses 
of bombarding ion and target (from Winterbon et al [14l). 
Both profiles show cylindrical symmetry around the ion 
beam direction. Contour interval 10% of maximum. 
Length in units of the average path length of the ion. 

(there is cylindrical symmetry around the x-axis). 
The scale on the co-ordinate axes depends on ion 
energy. The difference between successive con- 
tours is 10 % of the maximum value. 

FI) is replotted in Fig. 3, and an intersecting 
surface plane A B  has been included, which 
contains the z-axis. The angle of  incidence of the 
ion beam with respect to the surface normal is 0. 
It  is seen immediately that the maximum of the 
deposited-energy function along the surface 
plane is not in the point of  impact, but in a point 
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Figure 3 Contour plot of deposited energy as in Fig. 2. 
Target surface AB, angle-of-incidence v~, point of ion 
impact O and point of maximum sputtering yield C. 
Upper graph: Distribution of sputtering yield along 
surface for ion incident at O. 

C further "downstream".  By use of the contour 
map the deposited energy FD(r) can be drawn 
up as a function of lateral co-ordinate y for 
z -- 0. This curve has also been included in Fig. 
3. In view of Equation 2, also the local sputtering 
yield has its maximum in the point C and not in 
the point of  impact. This is a special case of  a 
more general result: because of the initial 
momentum of the ion, the centre of  the deposited- 
energy distribution is located at a finite distance 
from the point of  impact - seen in the direction 
of the bombarding ion. Hence there will usually 
be parts of  the sputtered surface that are suffici- 
ently close to the centre to be on a higher contour 
than the point of  impact. 

Now let us bombard  a surface with a structure 
of  the type sketched in Fig. 4. Assume that the 
distance between the points A and B, B and C, 
etc. correspond to the distance O C  in Fig. 3. 
Then, sputtering around the point B is 
dominated by those ions hitting near A, sputter- 
ing around the point C by ions hitting near B, 
etc. There is little sputtering near A, but more than 
average in D, since also ions hitting in E con 
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Figure 4 See text. 

tribute a little. Again, this is a rather general 
feature, which could have been sketched quali- 
tatively by using a very differently shaped 
structure. The main point is that the surface is 
not plane, so there is a tendency towards less 
sputtering near a top, and more sputtering near a 
valley. Obviously, there is an instability. 

It may be appropriate at this point to mention 
two of several simplifications that have been 
made up to now, in addition to the initial 
assumption of  random slowing-down: 
.(i) we have ignored in Figs. 3 and 4 the possible 
interruption of a collision cascade by the target 
surface, and 
(ii) we used the statistical average for FD(r) 
instead of an energy distribution for an individual 
cascade. 
Some comments will be made to justify these 
simplifications. 
(i) The profiles of Fig. 2 have been calculated for 
slowing-down in an infinite medium.Introduction 
of  a surface will cause modifications not only of 
those parts of the cascade that are literally cut 
away, but also those located near the surface. A 
correction could be made in principle, provided 
that such corrections were reasonably small [16]. 
In the present work we do not aim at high 
numerical accuracy. Hence, we can apply a 
rather leisurely criterion for the validity of 
assuming an infinite medium: contours from 
maximum down to N ~ maximum level must lie 
in the target, and so must the straight line 
connecting the point of impact with the cascade 
centre. In case of Fig. 3, this means that any 
quantitative conclusions have to be modified 
for 0 >~ 60 ~ Qualitative conclusions are much 
less sensitively affected, but may break down in 
case of grazing incidence, or in the presence of 
cavities etc. However, even at grazing incidence 
the calculated sputtering yield can be applied as 
an upper limit. 
(ii) The profiles of Fig. 2 are average profiles 
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taken over a large number of events with identical 
initial conditions. Individual cascades may 
scatter significantly [17]. However, sputtering 
yields are usually small (less than ~ 10 atoms 
per ion), so that surface changes, except on an 
atomic scale, necessarily require a great number 
of impinging ions. Considerably higher sputter- 
ing yields (,,~ 100 or more) can be achieved by 
using very heavy ions. In these cases, however, 
cascades show less fluctuation [17]. For  these 
two reasons, the use of average cascade profiles 
appears to be justified normally. (The statement 
will be modified slightly in Section 4.) 

3. Calculations 
Let a homogeneous beam of total fluence 
[ions cm -2] strike a surface A along the x- 
direction (Fig. 5). An ion hitting the surface in a 

Figure 5 Sput ter ing of  a surface A by a h o m o g e n e o u s  ion 
beam. Impact in r', sputtering from da at r. Cartesian 
co-ordinate system with the x-axis parallel to the beam. 

point r' causes a number of atoms to be sputtered 
from an area da at r. This number is given by 
A F D ( r -  r ' )da ,  in the average, according to 
Equation 2. Hence, the total number of atoms 
sputtered from the area da at r is given by 

Ns(r) d a = ~ A d a [ [ "  d y ' d z ' F D ( r - r ' )  (3) 
J J  3_ 

where ~ dy' dz' is the number of ions hitting an 
area dy' dz'. 

The target surface is determined by some 
relation 

x = f ( y , z )  ; x' = f ( y , z ' ) .  (4) 

For  a single-valued function x = f ( y ,  z), this 
representation leaves no ambiguities with respect 
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to the magnitude of the particle flux bombarding 
individual parts of the surface*. 

Since Equation 3 can be incorporated easily in 
a computer simulation program like that of [6], 
we restrict our attention to the evaluation of a 
few simple examples. We first look at a 1- 
dimensional problem, i.e. a furrow or ridge 
rather than a crater or a peak. The following 
surface, consisting of two intersecting planes, 
contains a number of interesting limiting cases, 

x = - C l y . . . y < O  
C 2 y . . . y  > 0 .  (5)  

For C1, C2 > 0 we have a ridge, and for C1, 
C2 < 0, a furrow. We approximate the deposited- 
energy profile by a Gaussian [14], i.e. 

f D ( x ,  y) ---- j?oo dz FD(r) = 

v e -(x-a)2/(2a2)-Y2/(2fi2) 
2rr a 13 (6) 

where v is the total energy deposited in atomic 
motion [18 ]. 

Numerical values of the average energy deposi- 
tion depth a and the longitudinal and lateral 
widths a and/3 can be found in [14]. Usually all 
three quantities are of the order of the ion range. 
Note that the Gaussian approximation has been 
found to be sufficient in most situations discussed 
in connection with calculations of the sputtering 
yield [13]. 

Inserting Equations 5 and 6 into Equation 3 
and integrating, we obtain 

v 
Ns(r) da = r A da 4(27r---- ~ 

�89 {~1 erfc(D0 + -~22 erfc(D2)} (7) 

where 

A1 = ~/(/32C2 + a2); A2 = ~/(fl2C22 + a2) 

l ( X -  a +  Cly)~ 
B1 = - ~ A12 ; 

B2 = - � 8 9  a -  C2y)2 
A2 e 

C 1 5 2 ( X  - -  a) - y a2 
D I = -  

a fi~/2 A 1 

D2 - a /3(2  A2 (8) 

and 

= d t  e - ~  . 

Let us first consider a symmetric ridge 
(C1 = C2 > 0). We can compare the sputtered 
intensity near the top of the ridge (x = y = 0) 
with the intensity far away (y --~ + oe). From 
Equation 7, we obtain 

I; e-a2/(2A12) 
Ns(0) da : r A da ~/(2~r) A ~  erfc(D1) 

p e-aZ/(2A12) 
Ns(oO) da = r A da . - -  

4(2~) A1 
Hence, 

Ns(0) da ( C1 a / 3 ~ .  
~Vs(oO) da - erfc \a~/2 A 1 J '  C1 = C2. (9) 

This is smaller than 1, as expected (note that 
erfc(0) = 1). For a symmetric furrow, Equation 
9 remains valid, but C1 < 0, so the ratio becomes 
greater than 1. 

A rough orientation over the magnitude of the 
effect is found by assuming a spherically sym- 
metric profile, i.e. a = /3. With an opening angle 
2 ~b of the ridge (Fig. 6a), we have C~ = cot r 
SO 

1 

~ ~ Y//////" 

o] C1=Cz>O c) CI=0 

i,i 
o 

i Y 

Cz>O 

l,l l 

b) CI= C2<0 

l,Li 

I][lll" y 

X 

d) C~=O Cz<O 

Figure 6 Four characteristic situations comprised by 
Equation 7. See text. 

* The author thanks Dr I. Teodorescu for warning him against the treacheries of various cosine factors. 
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Ns(oe) da = erfc cos ; for a = 13. (9a) 

Since typical values of  the ratio a/a lie in the 
region [14] ,-~ 0.5 to 1.5, the argument  in the 
error  function can become as large as ~ 1, and 
this may  in turn result in a near  order-of- 
magni tude reduction of  the sputtering yield on 
top of  a ridge according to Equat ion 9a. With  
the data  of  Winterbon,  Sigmund, and Sanders 
[14], and ~b = 45 ~ the ratio (Equation 9) 
assumes the values quoted in Table  I. 

TABLE I Ratio (Equation 9) between sputtering rates 
per unit surface area near the top of a ridge 
(opening angle 2 ~b = 90 ~ and an inclined 
plane at 45 ~ . Input parameters from Winter- 
bon et al [14]. M~ = ion mass; Ms = target 
mass; m = exponent in power cross-section. 
The situation corresponds approximately to 
Fig. 4 for the ratio Ns(A)/Ns(C). 

m M=/M1 

k 1 4 
�89 0.355 0.354 0.440 

�89 0.413 0.381 0.401 

We note  that  Equat ion 9 takes on a limiting 
value erfc(a/a~/2) for  a very steep ridge ( ~b ~ 0) 
This will be an overestimation of  the actual  ratio 
because of  the b reakdown of  the assumption of  
an infinite medium. 

Another  interesting quanti ty is the ratio be- 
tween the sputtering yield on top of  a ridge and 
that  of  a horizontal  plane (C~ = C~ = 0). 
Equat ion 7 yields for  this ratio 

Ns(ridge) da a e(a=/2 ) ( 1 / ~ z 2  - -  l/A12 ) 
Ns(plane) da = At 

{ 
e r e c t s )  (10) 

In  the limiting case of  a narrow ridge (small ~b), 
this reads 

Ns(ridge) da a ( ~ 2 )  
Ns(plane) da  ~ sin ~b. ) e a'/2=~ erfc 

for  small ~b. (10a) 

I f  we divide Equat ion  10 or 10a by the factor  
sin ~b, we get the ratio of  the regression speeds 
of  the two surfaces in the direction o f  the beam 
[6]. Evaluating this remaining expression in the 
cases ment ioned in Table  I we obtain  the values 
quoted in Table  II .  A g a i n ,  these values over- 
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TABLE I I  Ratio between the regression speeds in the 
beam direction of the area around the top of 
a ridge (opening angle 2 ~b) and a horizontal 
plane. Same input data as in Table I. The 
ratio has been found by dividing Equation 
10 by sin ~b. 

m M;M1 

1 4 

�89 0.643 0.619 0.628 

�89 0.685 0.666 0.606 

estimate the actual  ratio, since the effect of  a 
finite surface has a greater influence on the 
sputtering of  a nar row ridge than on that  o f  a 
plane at  perpendicular  incidence. Hence,  we 
conclude that  the regression speed of  the top of  a 
ridge is substantially smaller than  that  of  a 
planar  surface perpendicular  to the beam, even 
for  a relatively large opening angle (~b = 45 ~ 

Before a conclusion can be made  on the 
stability of  a ridge as compared  with that  of  a 
plane, we need an estimate of  the size of  the 
region where the sputtering yield is smaller than  
normal .  We evaluate only the mos t  critical case, 
i.e. that  o f  a very steep ridge, C1 ~ (1/sin ~b)--+oo 
In  this limit, we obtain f rom Equat ion  7 (x a) v sin ~berfc �9 
Ns  da ,,, 4~ A da a/(2~r ~ fi ~z~2- 

�89 +e-2U~/~ ' ) ;  C 1 - -  C2>~ 1 (11) 

where x is the depth measured f rom the top o f  
the ridge, and y the lateral co-ordinate  of  the 
surface. I t  is seen that  the factor  e r f c [ - ( x  - a)/ 
~ / 2 ]  increases monotonica l ly  with increasing x 
with a characteristic depth of  x ~ a, the average 
energy deposit ion depth, while the second fac tor  
decreases monotonical ly  with increasing y and a 
characteristic width of  y ~ ft. Obviously,  fo r  
y > fl ions hitting on one side of  the ridge do 
not  appreciably sputter  a toms on the other side. 

We conclude f rom Equations 10 and 11 that  a 
steep ridge with a height o f  the order of  the 
energy deposit ion depth ( ~  penetrat ion depth 
[14]) is more  stable against  sputtering than a 
planar  surface facing the beam at a right angle. 

As ment ioned previously, the corresponding 
relations for  the groove (Fig. 6b) are found by  
using negative values of  C1 in Equations 9 and 
10, or changing sign in the arguments  of  the 
error functions in Equat ions %,  10a and 11. A 
substantial  increase of  the sputtering yield near  
the b o t t o m  of  a groove would be predicted f rom 
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these equations. However, the physical signific- 
ance of  such numbers is somewhat doubtful, 
since many of the atoms sputtered near the bottom 
of a narrow groove will have a chance to be 
re-collected on the opposite wall. 

Another interesting case is that of a slope 
adjacent to a plateau (Fig. 6c). Setting C~ = 0 in 
Equation 7, but C2 v e 0, we immediately obtain 
the sputtering yields in the points O and O' as the 
arithmetic means of the yields of the plane and that 
of a ridge or groove with the same slope. Hence, 
we get qualitatively the same effects as previously 
but less pronounced. This may have the result 
that the edge of a plateau develops to become a 
ridge. Also, at the bottom of a slope that ends 
up in the plane (Fig. 6d), a groove may develop. 
The latter effect is well known from the experi- 
mental observations, and alternative explanations 
involving scattered ions or high-energy sputtered 
atoms have been offered [9, 12]. Fig. 7 shows a 

/ \ 
/ \ . . . . .  

Sput|ering of a ridge (schemalicnIly} 

Figure 7 Sputtering of a ridge (schematically). The regres- 
sion speed is greatest at the lower edge, slightly smaller on 
the slope, considerably smaller on the horizontal plane, 
and smallest near the top. 

qualitative sketch of the development of a ridge 
located on a plane surface, according to the 
results obtained so far. 

We now proceed to a two-dimensional situa- 
tion. One of the simplest ones is a cone bom- 
barded at perpendicular incidence. In cylindrical 
co-ordinates (x, p, r the cone surface is written 
a s  

x = C p ;  C > 0  (12) 

and FD(r) is given, in the notation of Equation 6, 
a s  

v 
FD(r) -- (2~)~/z a f12 e-(~-")"/C~)-P'/C2flb �9 (13) 

When Equations 12 and 13 are inserted into 
Equation 3, a fairly complex BesseMntegral is 
the result. To simplify the calculations, we 

directly consider those limits that have been 
considered previously. 

Near the top (x = p = 0) we obtain 

Ns(0) da = r A da ~/(2w'----) A --~ e-~V(2~) 

Ca5 

. . . .  (14) 

where 

A = 4(3 2 C z + 12). (15) 

Far out on the slope, for large values of p, we get 

v 1 
Ns(~)  da = r A da ~ ~ e-aV( 2Ab (16) 

which yields the ratio 

Ns(O) c~ { 
N s ( ~ )  = "A e-(C'a'd~)/(2A'~b 

-~/(w/2)-C~Afl erfc { Ca f l ~  (17) 
\ ~ / 2 a A ] J  " 

This formula can be compared with Equation 9 
that was derived for a ridge. However, the present 
ratio is usually substantially smaller. For  
example, for a cone with an opening angle of 
45 ~ (C = 1) the ratio (Equation 17) becomes 
N 0.2 with the numbers leading to Table I. 

Dramatic effects are found for C >> 1, i.e. for 
very narrow cones. In this case, Equation 3 reads 
(C = cot r 

v ~ sin z r e_PZl(Zfl~) 
Ns(p) da = r A da ~(2w)/3 z 

e (x-a)~/(2~,) + ~/(w/2)x _ _  a erfc 
(Z 

C >~ 1. (18) 

This corresponds to Equation 11 for the ridge. 
The essential new feature is the factor sin 2 r ~ 1 
in the numerator. Take, for example, the ratio of 
the regression speeds on top of a cone and on a 
plane at perpendicular incidence, i.e. 

1 2  " I Vtop __ ~-2sln r  1 
) ;p lane 

ae~/2~erfc(-~-~--a)}" r  (19) - 4(w/2) ; 

which corresponds to Equation 10a, but without 
the factor sin r there. It is this factor that makes 
the top of a cone almost infinitely stable against 
sputtering. To be sure that this effect is not a 
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singular feature of a region of minute dimensions 
we also evaluate the ratio of the regression speed 
at x = a (p = (a/C) ~ a) and that of a plane. 
Equation 18 yields 

v(x = a) ~2 
vpl~ne - ~ sin ~b e ~ /~ '  ; 

x = a ;  ~bsmall. (20) 

Again this ratio is ~ 1. In order to understand 
qualitatively the results of Equations 19 and 20 
one should appreciate that the top region of a 
narrow cone has lateral dimensions that are 
considerably smaller than that of a collision 
cascade. Such a region would normally - i.e. if it 
were imbedded in a plane, infinite target surface - 
be affected by a number of cascades covering an 
area of the order of ~rfl 2. However, as it stands 
most of those cascades will miss the top of the 
cone and hit somewhere underneath. This will 
drastically reduce the sputtering effect. 

For a ridge we had a factor of sin ~b in the 
sputtering yield per unit area; this is replaced by 
sin s ~b for a cone. In the regression speed one 
factor of sin ~b is taken away. Thus while the top 
of a ridge had a regression speed that was only 
smaller by a factor of 2 to 3 than that of a plane 
(Table II), we get an order-of-magnitude effect in 
case of a cone or a cone-like structure. Note 
again that the effects will be enhanced when 
energy deposition functions valid for an infinite 
medium are replaced by those satisfying proper 
boundary conditions imposed by the Iocation of  
the target surface. 

4. Discussion 
As was mentioned in the introduction, it is not 
the intention of the present work to rule out any 
of the suggested mechanisms for nucleation and 
growth of radiation-induced surface topography. 
We rather want to specify some of  the conse- 
quences of the present considerations. 

1. The present mechanism operates on a length 
scale of the order of the penetration depth of the 
ions. In those cases where observed structure has 
characteristic dimensions that are one or 
several orders of magnitude greater than the ion 
range, the present mechanism may at most be 
significant in determining the nucleation, not the 
growth. When the experimental resolution 
allows one to observe structures with dimensions 
of the order of the ion range, these dimensions 
should vary wit~ ion energy in accordance with 
the ion range. 

2. Surface smoothing by atom migration has 
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been neglected in the present considerations. In 
those cases where migrational processes strongly 
act in the opposite direction, lowering the 
temperature will enhance the significance of the 
present mechanism. In this respect, the present 
mechanism is complementary to Hermanne's 
[4, 19], where nucleation takes place at defect 
clusters that arise by homogeneous nucleation of 
migrating point defects. The characteristic 
temperatures for the two mechanisms need not be 
identical nor even related. Thus, both mechanisms 
may act simultaneously. A key point for experi- 
mental investigations appears to be an indication 
of whether there exists an upper and/or a lower 
temperature limit for occurrence of  surface 
topography. 

3. Impurities have so far [8] been assumed to 
coagulate on certain positions, decreasing the 
sputtering yield locally, and thus giving rise to 
cone formation. In addition, impurities might 
inhibit (or enhance) migrational smoothing, and 
thus stimulate (or prevent) surface roughening 
by the present mechanism. 

4. At sufficiently low temperatures, i.e. when 
no appreciable migrational smoothing takes 
place, a bombarded surface is expected to be 
rough on a scale determined by the ion range 
(and dose). The expected structures (furrows, 
cones, etc.) should be oriented such as to face the 
ion beam. Re-orienting the crystal surface should 
change the orientation of the observed surface 
structure. There appears to exist qualitative 
evidence to support this point experimentally 
[20, 21 ]. In view of the low ion energies employed 
in many experiments, the most dramatic effects 
of surface roughness may possibly have gone 
unnoticed so far. Spikes a few tens of 
Angstroms wide and ~ 100A long may be 
extremely stable under ion bombardment (if 
stable at all), but may be difficult to detect and 
sensitive to mechanical and thermal treatment 
(replica). For polishing purposes [12, 22, 23] it 
may be advisable to avoid a well-collimated 
beam to hit the target constantly at one and the 
same direction. 

5. It was mentioned previously that grooves 
are often observed around the bottom of a cone 
on an otherwise comparatively flat surface area 
[9]. The occurrence of these grooves may be 
explained by the mechanism sketched in Figs. 6 
and 7, provided that the characteristic dimensions 
are reasonably close to the ion range. An altern- 
ative explanation [9, 12] involves sputtering by 
scattered ions and high-energy sputtered atoms. 
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Within the framework of collision cascade 
theory in an infinite medium, the two 
mechanisms appear to be very similar aspects of 
one basic mechanism. Analytic calculations 
including target surface effects at very oblique 
incidence may give further insight. 

6. Although it has been asserted that the 
present mechanism can be responsible for the 
nucleation of surface topography, this cannot be 
literally true. As it stands, Equation 3 provides an 
instability, but requires small irregularities 
before enhancement is possible. Such irregular- 
ities can be at a smaller scale than the ion range. 
They may be provided by craters left behind an 
exceptionally violent sputtering event (note that 
fluctuations of the sputtering yield may be 
substantial [17]), the trace behind a sputtered 
cluster [10], a region of high sputtering yield 
because of lattice damage [4] or a small island of 
impurities [8]. The present mechanism probably 
provides a useful link between the events taking 
place on an atomic scale and those features that 
can be predicted from the macroscopic variation 
of the sputtering yield with the direction of 
incidence [5, 6]. 

7. It is evident that pronounced surface 
topography can influence the magnitude of the 
total sputtering yield. Within the present 
description, the main effects are an increase in 
yield as compared to a flat surface because of an 
increase in surface area, and a decrease in yield 
because of increased redeposition for oblique 
ejection. The deposited-energy function in 
Equation 1 is less sensitive to surface topography, 
since it is an average according to Equation 3 
over the whole surface area. This point has 
already been mentioned in [13]. It is most 
reasonable to assume that surface topography is 
responsible for part of the dose effects observed 
in recent sputtering-yield measurements [24]. 
This is consistent with the experience that the 
observed variation of the yield with ion energy, 
type, and angle of incidence is predicted well by 
the theory [13], while the absolute magnitude 
depends on the history of the target. 
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